10 resultados para Rhizosphere

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant–microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on α-galactosides in seed wash suggested that α-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microorganisms modify rates and mechanisms of chemical and physical weathering and clay growth, thus playing fundamental roles in soil and sediment formation. Because processes in soils are inherently complex and difficult to study, we employ a model based on the lichen–mineral system to identify the fundamental interactions. Fixed carbon released by the photosynthetic symbiont stimulates growth of fungi and other microorganisms. These microorganisms directly or indirectly induce mineral disaggregation, hydration, dissolution, and secondary mineral formation. Model polysaccharides were used to investigate direct mediation of mineral surface reactions by extracellular polymers. Polysaccharides can suppress or enhance rates of chemical weathering by up to three orders of magnitude, depending on the pH, mineral surface structure and composition, and organic functional groups. Mg, Mn, Fe, Al, and Si are redistributed into clays that strongly adsorb ions. Microbes contribute to dissolution of insoluble secondary phosphates, possibly via release of organic acids. These reactions significantly impact soil fertility. Below fungi–mineral interfaces, mineral surfaces are exposed to dissolved metabolic byproducts. Through this indirect process, microorganisms can accelerate mineral dissolution, leading to enhanced porosity and permeability and colonization by microbial communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism that confers increased Al resistance in the Arabidopsis thaliana mutant alr-104 was investigated. A modified vibrating microelectrode system was used to measure H+ fluxes generated along the surface of small Arabidopsis roots. In the absence of Al, no differences in root H+ fluxes between wild type and alr-104 were detected. However, Al exposure induced a 2-fold increase in net H+ influx in alr-104 localized to the root tip. The increased flux raised the root surface pH of alr-104 by 0.15 unit. A root growth assay was used to assess the Al resistance of alr-104 and wild type in a strongly pH-buffered nutrient solution. Increasing the nutrient solution pH from 4.4 to 4.5 significantly increased Al resistance in wild type, which is consistent with the idea that the increased net H+ influx can account for greater Al resistance in alr-104. Differences in Al resistance between wild type and alr-104 disappeared when roots were grown in pH-buffered medium, suggesting that Al resistance in alr-104 is mediated only by pH changes in the rhizosphere. This mutant provides the first evidence, to our knowledge, for an Al-resistance mechanism based on an Al-induced increase in root surface pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colonization mutant of the efficient root-colonizing biocontrol strain Pseudomonas fluorescens WCS365 is described that is impaired in competitive root-tip colonization of gnotobiotically grown potato, radish, wheat, and tomato, indicating a broad host range mutation. The colonization of the mutant is also impaired when studied in potting soil, suggesting that the defective gene also plays a role under more natural conditions. A DNA fragment that is able to complement the mutation for colonization revealed a multicistronic transcription unit composed of at least six ORFs with similarity to lppL, lysA, dapF, orf235/233, xerC/sss, and the largely incomplete orf238. The transposon insertion in PCL1233 appeared to be present in the orf235/233 homologue, designated orf240. Introduction of a mutation in the xerC/sss homologue revealed that the xerC/sss gene homologue rather than orf240 is crucial for colonization. xerC in Escherichia coli and sss in Pseudomonas aeruginosa encode proteins that belong to the λ integrase family of site-specific recombinases, which play a role in phase variation caused by DNA rearrangements. The function of the xerC/sss homologue in colonization is discussed in terms of genetic rearrangements involved in the generation of different phenotypes, thereby allowing a bacterial population to occupy various habitats. Mutant PCL1233 is assumed to be locked in a phenotype that is not well suited to compete for colonization in the rhizosphere. Thus we show the importance of phase variation in microbe–plant interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sinorhizobium meliloti bacteria produce a signal molecule that enhances root respiration in alfalfa (Medicago sativa L.) and also triggers a compensatory increase in whole-plant net carbon assimilation. Nuclear magnetic resonance, mass spectrometry, and ultraviolet–visible absorption identify the enhancer as lumichrome, a common breakdown product of riboflavin. Treating alfalfa roots with 3 nM lumichrome increased root respiration 21% (P < 0.05) within 48 h. A closely linked increase in net carbon assimilation by the shoot compensated for the enhanced root respiration. For example, applying 5 nM lumichrome to young alfalfa roots increased plant growth by 8% (P < 0.05) after 12 days. Soaking alfalfa seeds in 5 nM lumichrome before germination increased growth by 18% (P < 0.01) over the same period. In both cases, significant growth enhancement (P < 0.05) was evident only in the shoot. S. meliloti requires exogenous CO2 for growth and may benefit directly from the enhanced root respiration that is triggered by lumichrome. Thus Sinorhizobium–alfalfa associations, which ultimately form symbiotic N2-reducing root nodules, may be favored at an early developmental stage by lumichrome, a previously unrecognized mutualistic signal. The rapid degradation of riboflavin to lumichrome under many physiological conditions and the prevalence of riboflavin release by rhizosphere bacteria suggest that events demonstrated here in the S. meliloti–alfalfa association may be widely important across many plant–microbe interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pigmented naphthoquinone derivatives of shikonin are produced at specific times and in specific cells of Lithospermum erythrorhizon roots. Normal pigment development is limited to root hairs and root border cells in hairy roots grown on “noninducing” medium, whereas induction of additional pigment production by abiotic (CuSO4) or biotic (fungal elicitor) factors increases the amount of total pigment, changes the ratios of derivatives produced, and initiates production of pigment de novo in epidermal cells. When the biological activity of these compounds was tested against soil-borne bacteria and fungi, a wide range of sensitivity was recorded. Acetyl-shikonin and β-hydroxyisovaleryl-shikonin, the two most abundant derivatives in both Agrobacterium rhizogenes-transformed “hairy-root” cultures and greenhouse-grown plant roots, were the most biologically active of the seven compounds tested. Hyphae of the pathogenic fungi Rhizoctonia solani, Pythium aphanidermatum, and Nectria hematococca induced localized pigment production upon contact with the roots. Challenge by R. solani crude elicitor increased shikonin derivative production 30-fold. We have studied the regulation of this suite of related, differentially produced, differentially active compounds to understand their role(s) in plant defense at the cellular level in the rhizosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al-resistant (alr) mutants of Arabidopsis thaliana were isolated and characterized to gain a better understanding of the genetic and physiological mechanisms of Al resistance. alr mutants were identified on the basis of enhanced root growth in the presence of levels of Al that strongly inhibited root growth in wild-type seedlings. Genetic analysis of the alr mutants showed that Al resistance was semidominant, and chromosome mapping of the mutants with microsatellite and random amplified polymorphic DNA markers indicated that the mutants mapped to two sites in the Arabidopsis genome: one locus on chromosome 1 (alr-108, alr-128, alr-131, and alr-139) and another on chromosome 4 (alr-104). Al accumulation in roots of mutant seedlings was studied by staining with the fluorescent Al-indicator dye morin and quantified via inductively coupled argon plasma mass spectrometry. It was found that the alr mutants accumulated lower levels of Al in the root tips compared with wild type. The possibility that the mutants released Al-chelating organic acids was examined. The mutants that mapped together on chromosome 1 released greater amounts of citrate or malate (as well as pyruvate) compared with wild type, suggesting that Al exclusion from roots of these alr mutants results from enhanced organic acid exudation. Roots of alr-104, on the other hand, did not exhibit increased release of malate or citrate, but did alkalinize the rhizosphere to a greater extent than wild-type roots. A detailed examination of Al resistance in this mutant is described in an accompanying paper (J. Degenhardt, P.B. Larsen, S.H. Howell, L.V. Kochian [1998] Plant Physiol 117: 19–27).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic resistance in plants to root diseases is rare, and agriculture depends instead on practices such as crop rotation and soil fumigation to control these diseases. "Induced suppression" is a natural phenomenon whereby a soil due to microbiological changes converts from conducive to suppressive to a soilborne pathogen during prolonged monoculture of the susceptible host. Our studies have focused on the wheat root disease "take-all," caused by the fungus Gaeumannomyces graminis var. tritici, and the role of bacteria in the wheat rhizosphere (rhizobacteria) in a well-documented induced suppression (take-all decline) that occurs in response to the disease and continued monoculture of wheat. The results summarized herein show that antibiotic production plays a significant role in both plant defense by and ecological competence of rhizobacteria. Production of phenazine and phloroglucinol antibiotics, as examples, account for most of the natural defense provided by fluorescent Pseudomonas strains isolated from among the diversity of rhizobacteria associated with take-all decline. There appear to be at least three levels of regulation of genes for antibiotic biosynthesis: environmental sensing, global regulation that ties antibiotic production to cellular metabolism, and regulatory loci linked to genes for pathway enzymes. Plant defense by rhizobacteria producing antibiotics on roots and as cohabitants with pathogens in infected tissues is analogous to defense by the plant's production of phytoalexins, even to the extent that an enzyme of the same chalcone/stilbene synthase family used to produce phytoalexins is used to produce 2,4-diacetylphloroglucinol. The defense strategy favored by selection pressure imposed on plants by soilborne pathogens may well be the ability of plants to support and respond to rhizosphere microorganisms antagonistic to these pathogens.